Quiz 4 Solutions

1. Compute $\iint_{D} 2 x y d A$, where D is the triangular region with vertices $(0,0),(1,2)$, and (0,3).

Solution.

$$
\begin{aligned}
\iint_{D} 2 x y d A & =\int_{0}^{1} \int_{2 x}^{3-x} 2 x y d y d x \\
& =\int_{0}^{1}\left[x y^{2}\right]_{y=2 x}^{y=3-x} d x \\
& =\int_{0}^{1}\left(-3 x^{3}-6 x^{2}+9 x\right) d x \\
& =\left[-\frac{3}{4} x^{4}-2 x^{3}+\frac{9}{2} x^{2}\right]_{0}^{1} \\
& =\frac{7}{4}
\end{aligned}
$$

2. Use triple integrals to find the volume of the tetrahedron enclosed by the coordinate planes and the plane $2 x+y+z=4$.
Solution. Let A be the region obtained by projecting the volume V onto the $x y$-plane. Also, the plane $2 x+y+z=4$ intersects the $x y$-plane in $y=4-2 x$. Using vertical strips, the region A is the $x y$-plane can be described by $A=\{(x, y) \mid 0 \leq x \leq 2,0 \leq y \leq 4-2 x\}$.
Therefore the volume V is given by

$$
\begin{aligned}
V & =\int_{0}^{2} \int_{0}^{4-2 x} \int_{0}^{4-2 x-y} d z d y d x \\
& =\int_{0}^{2} \int_{0}^{4-2 x}(4-2 x-y) d y d x \\
& =\int_{0}^{2}\left[4 y-2 x y-\frac{y^{2}}{2}\right]_{y=0}^{y=4-2 x} d x \\
& =\int_{0}^{2}\left(2 x^{2}-8 x+8\right) d x \\
& =\left[\frac{2}{3} x^{3}-4 x^{2}+8 x\right]_{0}^{2} \\
& =\frac{16}{3} .
\end{aligned}
$$

